Evolution in Peripheral Nerve Repair: The Use of Processed Nerve Allograft

Bauback Safa, MD, MBA, FACS, The Buncke Clinic

Assistant Clinical Professor, Stanford Plastic Surgery

Assistant Clinical Professor, UCSF Plastic Surgery

THE BUNCKE CLINIC

Disclosures

- Axogen
 - Research grant recipient
 - Consultant

HARRY J. BUNCKE (1922-2008)

BUNCKE BUNTIC SAFA

Agenda

- How we started using nerve allografts
- Sensory cases
- Motor cases
- RANGER data
- MATCH data

Options at the time

- Nerve conduit (mostly collagen)
- Autograft
 - Close up
 - Return a few months later
 - Resect
 - Graft

Conduits

- Our experience did not mirror the "Weber Study"
 - Gaps > 1cm did not seem to perform well

Existing Data for Nerve Conduits

- Weber et al 2000, PGA tube
 - First and only randomized prospective multi-center study on conduits
 - 126 Nerves Injuries in 98 Subjects
 - 25% of injuries lost to follow-up
 - 46 nerves treated with conduits evaluated
 - Compared outcomes to 2 control groups Direct Repair and Autograft
 - Repairs in the hand distal to the SPA
 - Recovery assessment of 2-PD (moving or static which ever was lower)
 - Mean gap length = 7 mm; Maximum conduit length = 25 mm
 - Length of 30 mm not tested with conduits

Conduit

Recovery	Gap <u><</u> 4mm	Gap 5-7mm	Gap <u>></u> 8mm	Total
Excellent	10(91%)	3 (17%)	7 (42%)	20
Good	1 (9%)	8 (44%)	5 (29%) 📜	14
Poor	0	7 (39%) 🅊	5 (29%) 🦵	12
Total	11	18	17	46

unic Back to our case...

Ly a

S AURICES

3 Months Post-Op

3 Months Post-Op

3 Months Post-Op

THUMB AVULSION AMPUTATION

RDN: 4cm Nerve Allograft UDN: 4cm Nerve Allograft

RDN: SWMF 3.61 (0.4g) S2PD 8 mm UDN: SWMF 4.31 (2g) S2PD 12mm

MEDIAN NERVE NEUROMA IATROGENIC INJURY

10mm S2PD SMWF: 3.61 (0.4gm)

No 2PD SMWF: 3.61 (0.4gm)

12mm S2PD SMWF: 4.31 (2 gm)

10mm S2PD SMWF: 4.31 (2 gm)

14 Months

Pain Fully Resolved

THUMB AVULSION AMPUTATION

2.5 year old girl

Distal

Radial Digital Nerve: . End-to-side

4000

Ulnar Digital Artery (11-0)

Ulnar Digital · Nerve

Avance graft

Proximal

THUMB AVULSION AMPUTATION HORSE BITE

4 months

Light touch

CEMENT MIXER VS. THUMB 35 YEAR OLD MAN

RING AVULSION INJURY

Mechanism of Ring Avulsions

Clin Plastic Surg 34 (2007) 187–195

Ring migration and angulation Skin compression and distal translation Transverse skin rupture Ring plows distally, deep to subq tissue Rupture of the remaining skin (arrow)

Initial rupture of neurovascular bundle (arrow) Flexor still intact

Progressive disruption of flexor; Near complete NVB rupture

Flexor tendon rupture and elastic recoil

J Hand Surg 1999;24A:1249–1253

RING AVULSION INJURY

Concept

- If there is a gap in
 - Soft tissues
 - Artery
 - Vein
 - Etc...
- There will be a gap in the nerve
- Strategy:
 - Bridge all gaps aggressively
 - Soft tissues
 - Vessels
 - Nerves

RDN: 10 S2PD UDN: No 2PD SWMF: 3.61 (0.4mg) for both UDN and RDN

RING AVULSION INJURY

Do Nerve Protectors Affect Recovery?

- Zoldos et al. 2017 AAHS ePoster 169.
- Subgroup analysis of upper extremity nerve repairs from the RANGER Registry
- All repairs performed with peripheral nerve allograft
- Trend toward higher meaningful recovery with Protectors (89%) vs Control (79%)

Factor	PNA w/Protector	PNA only			
Age (years)	43±15	43±20			
No. Repairs	19	27			
Follow-up (days)	361±188	409±201			
Gap Length (mm)	33±14	29±11			
Time to Repair					
Acute (< 3 weeks)	9	18			
Delayed (3 weeks-3 mths)	5	1			
Chronic (> 3 months)	5	8			
Type of Nerve					
Sensory	3	5			
Mixed	12	17			
Motor	4	5			
Mechanism of Injury					
Laceration	7	16			
Complex	12	11			
Meaningful Recovery	89%*	79%*			
*p=0.26, Fisher's exact test Age, follow-up days and gap length are presented as <u>Mean±SD</u>					

The Journal of TRAUMA® Injury, Infection, and Critical Care

Alleviated Tension at the Repair Site Enhances Functional Regeneration: The Effect of Full Range of Motion Mobilization on the Regeneration of Peripheral Nerves— Histologic, Electrophysiologic, and Functional Results in a Rat Model

Robert Schmidhammer, MD, Shahin Zandieh, Rudolf Hopf, Ingrid Mizner, Linda E. Pelinka, MD, Albert Kroepfl, MD, and Heinz Redl, PhD

Other Reasons to Use Connector or Wrap

- "De-tensioning" the coaptation site
- Leveling the playing field in nerve coaptation

SCIENTIFIC ARTICLE

Technical Assessment of Connector-Assisted Nerve Repair

Jonathan Isaacs, MD,* Bauback Safa, MD,+ Peter J. Evans, MD, PhD,‡ Jeffrey Greenberg, MD§

J Hand Surg Am, 2016

Grade	Description	Example Image
Excellent	End-to-end alignment, no gapping, adequate tension and approximation, no fascicle extrusion	
Good	End-to-end alignment gapping < 1 mm, no fascicle extrusion	
	Or End-to-end alignment, excessive approximation, no fascicle extrusion	An
Fair	End-to-end alignment gapping > 1 mm, fascicle extrusion	
Poor	Inadequate alignment regardless of tension, fascicle extrusion	

Grade	Description	Example Image
Excellent	End-to-end alignment with no gapping	
Good	End-to-end alignment with some gapping ≤ 2 mm	
Fair	Partial alignment with some overlap between ends and some fascicles not approximated	
Poor	Inadequate alignment of both stumps within the connector gap is > 5 mm, stump is pushed against the connector wall or stumps overlap	

FIGURE 3: Example of a poorly aligned nerve repair utilizing the connector-only technique.

FIGURE 4: Example of a well-aligned nerve repair utilizing the connector-assist technique. Note the aligning sutures seen through the connector. The walls of the connector mold and direct the nerve ends into proper alignment.

FIGURE 5: Examples of well aligned repairs. A Suture-only technique. B Connector-only technique.

FIGURE 6: Example of an overtightened suture-only repair. Although the nerve ends are in gross alignment, note the fascicles pooching out the sides of the repair.

TABLE 1. Technical Scores of Cadaveric NerveRepairs

Туре	Р	F	G	E
Connector-assisted experienced	1	1	2	11
Connector-assisted inexperienced	3	2	1	9
Connector-only experienced	1	3	6	5
Connector-only inexperienced	8	5	2	0
Suture-only experienced	0	4	2	9
Suture-only inexperienced	2	6	3	4

E, Excellent; F, Fair; G, Good; P, Poor.

TABLE 1. Technical Scores of Cadaveric NerveRepairs

Туре	Р	F	G	E
Connector-assisted experienced	1	1	2	11
Connector-assisted inexperienced	3	2	1	9
Connector-only experienced	1	3	6	5
Connector-only inexperienced	8	5	2	0
Suture-only experienced	0	4	2	9
Suture-only inexperienced	2	6	3	4

E, Excellent; F, Fair; G, Good; P, Poor.

TABLE 1. Technical Scores of Cadaveric NerveRepairs

Туре	Р	F	G	Е
Connector-assisted experienced	1	1	2	11
Connector-assisted inexperienced	3	2	1	9
Connector-only experienced	1	3	6	5
Connector-only inexperienced	8	5	2	0
Suture-only experienced	0	4	2	9
Suture-only inexperienced	2	6	3	4

E, Excellent; F, Fair; G, Good; P, Poor.

Conclusions of the Study

- Inexperienced surgeons were <u>more</u> <u>likely</u> to achieve inadequate alignment with suture-only or conduit-only repairs.
- There was <u>no</u> significant difference in the technical alignment of conduitassisted repairs between experienced and inexperienced surgeons

UDN: 10 S2PD RDN: 7mm M2PD SWMF: 3.61 (0.4mg) for both UDN and RDN

MULTI-LEVEL MUTILATING INJURY

1 year

ULNAR NERVE INJURY

HIGH ULNAR NERVE INJURY

FCU function against strong resistance

Outcomes with Processed Nerve Allograft + Nerve Protectors

- Zoldos et al. 2017 AAHS ePoster 169.
- Subgroup analysis of upper extremity nerve repairs from the RANGER Registry
- All repairs performed with peripheral nerve allograft
- Trend toward higher meaningful recovery with Protectors (89%) vs Control (79%)

Factor	PNA w/Protector	PNA only
Age (years)	43±15	43±20
No. Repairs	19	27
Follow-up (days)	361±188	409±201
Gap Length (mm)	33±14	29±11
Time to Repair		
Acute (< 3 weeks)	9	18
Delayed (3 weeks-3 <u>mths</u>)	5	1
Chronic (> 3 months)	5	8
Type of Nerve		
Sensory	3	5
Mixed	12	17
Motor	4	5
Mechanism of Injury		
Laceration	7	16
Complex	12	11
Meaningful Recovery	89%*	79%*
*p=0.26, Fisher's exact test Age, follow-up days and gap length are presented as <u>Mean±SD</u>		

6 Months Post-Op

RADIAL NERVE INJURY CASE 3

- Radial nerve defect associated with humerus fx
- 3-4cm gap bridged with 5cm allograft

- 15 months
- WE = 4/5
- finger ext = 3+ to 4- /5
- 2-3cm gap bridged with 5cm allograft

- 15 months
- WE = 4/5
- finger ext = 3+ to 4- /5
- 2-3cm gap bridged with 5cm allograft

- 15 months
- WE = 4/5
- finger ext = 3+ to 4- /5
- 2-3cm gap bridged with 5cm allograft

- 20 months
- WE = 4+/5
- finger ext = $4/5 \rightarrow EIP$ returned
- Sensation "80%" normal SBRN

- 20 months
- WE = 4+/5
- finger ext = $4/5 \rightarrow EIP$ returned
- Sensation "80%" normal SBRN

DEEP ULNAR MOTOR NERVE INJURY

CASE 4

Ice Pick Injury

- 45 year old male
- Ice pick injury to right hand
- Specific, isolated ulnar motor deficit
- No sensory loss

12 Months Post-op

12 Months Post-op

FACIAL NERVE CASE 5

Courtesy: Renata Weber, MD
Defects

- Marginal mandibular
- Buccal
- Zygomatic
- (Frontal/temporal intact)

Motor Nerve Results

- Defects in:
 - Marginal mandibular
 - Buccal
 - Zygomatic
 - (Frontal/temporal intact)
- 30 mm x2, 40mm x1 lower Facial nerve branches
 - At <u>4 months</u>, zygomatic & buccal branches recovered
 - At <u>9 months</u>, marginal mandibular and ungrafted upper branches fully recovered.

THORACODORSAL NERVE CASE 6

Nerve reconstructed with Avance

Allograft Nerve Reconstruction Clinical Data Overview

Bauback Safa, MD, MBA, FACS, The Buncke Clinic

Assistant Clinical Professor, Stanford Plastic Surgery

Assistant Clinical Professor, UCSF Plastic Surgery

44 Peer Reviewed Publications on Avance[®] Nerve Graft

and two women with a

5 Publications and 50 Clinical Conference Presentations from RANGER Registry

2140 - 10 post ASSR1 - Published by Elsevier, Inc. All rights reserved

© son ASSH - Published by I

- Largest multi-center clinical study in peripheral nerve repair (>1000 nerve repairs!)
 - Processed Nerve Allograft
 - Contemporary Controls (MATCH Study Arm)
 - Autograft
 - Hollow Tube Conduits
- Multicenter standardized data collection for "Real Time" tracking of:
 - Demographics, injury, and treatment
 - Quantitative and qualitative outcomes
- Data management and analysis conducted independently with pre-defined criteria

Actively Enrolling RANGER Sites

Institution	Principal Investigator	Institution	Principal Investigator	
The Buncke Clinic	Greg Buncke, MD	Walter Reed NMMC	Patricia McKay, MD	
Johns Hopkins	John Ingari, MD	MetroHealth	Harry Hoyen, MD	
Duke University	Fraser Leversedge, MD	John Peter Smith UNTHSC	Timothy Niacarus, MD	
San Antonio MMC	Mickey Cho, MD	Phoenix Children's Hosp	P. David Adelson, MD	
Univ of Kentucky	Brian Rinker, MD	Ohio State Univ.	Sonu Jain, MD	
Multi-Disciplinary Specialties	Renata Weber, MD	Arizona Center for Hand Surgery	Josef Zoldos, MD	
Cleveland Clinic	Steven Maschke. MD	Univ of Washington	Jeffrey Friedrich, MD	
Vanderbilt University	Wesley Thayer, MD	Children's Hosp of Atlanta	Bryce Gillespie, MD	
	Mihir Desai, MD	Florida Orthopaedic Institute	Jason Nydick, MD	
University of Cincinnati David McGee MD		York Hospital, Toronto	Yasser El-Sheikh MD	

Outcome Reporting from RANGER

Medical Research Council Classification (MRCC) of Sensory Recovery as modified by Mackinnon		Medica Motor	ll Research Council Classification (MRCC) of Recovery as modified by Mackinnon	
S0	Absence of sensibility in the autonomous area	M0	No contraction	
S1	Recovery of deep cutaneous pain sensibility within the autonomous area of the nerve	M1	Return of perceptible contraction in the proximal muscles	
S2	Return of some degree of superficial cutaneous pain and tactile sensibility within the autonomous area of the nerve	M2	Return of perceptible contraction in both proximal and distal muscles	
S3	Return of superficial cutaneous pain and tactile sensibility throughout the autonomous area, with disappearance of any previous over response	M3	Return of function in both proximal and distal muscles to such a degree that all important muscles are sufficiently powerful to act against gravity	Meaningful Recovery
S3+	Return of sensibility as in S3; in addition, there is some recovery of 2-point discrimination within the autonomous area (7-15 mm)	M4	All muscles act against strong resistance and some independent movements are possible	Higher Threshold
S4	Complete recovery (2-point discrimination, 2-6 mm)	M5	Full recovery in all muscles	of Recovery

Widely Accepted Convention: Allografts Work for Sensory Gaps

	Ν	Gap (mm)	m2PD	s2PD	% MR (S3/S4)	% HT MR (S3+/S4)
Moran 2009	10	22.3 (5-30)	4.4	5.5	100%	100%
Brooks 2011	49	19 ± 8	8	8	89.5%	NR
Cho 2012	44	22 (5-50)	8	8	86%	NR
Taras 2013	18	11 (5-30)	NR	7	100%	100%
Rinker 2015	37	11 ± 3	NR	7.1	92%	84%
Zuniga 2014	23	34 (8-70)	NR	NR	87%	NR
Means 2016	7	12 (5-20)	5	5	100%	100%
Rinker 2017	50	35 (27-50)	NR	9	86%	64%

HISTORICAL CONTROLS: Conduit : 40-72% Autograft: 60-88%

MATCH Study

A Comparison of Peripheral Nerve Allograft to Contemporary Controls

Best Papers Session

Lal Lat

RANGER Matched Comparisons of Allograft to Conduit & Autograft

Slide from Buncke et al. 2015 ASSH Best Papers Session.

Do Allografts Work in Long Gaps?

SURGICAL ONCOLOGY AND RECONSTRUCTION

Sensory Outcomes After Reconstruction of Lingual and Inferior Alveolar Nerve Discontinuities Using Processed Nerve Allograft—A Case Series Jobn R. Zuniga, DMD, MS, PbD*

- 28 lingual and inferior alveolar nerve discontinuities
- 100% improved
- 52% recovered to normal sensation

Gap Length	% Showing Improvement
11-30mm	82%
31-70mm	83%

Do Allografts Work in Long Gaps?

- Rinker et al. 2017 Annals of Plastic Surgery
- Subgroup analysis from the RANGER Registry
- 50 digital nerve repairs
- Mean gap length 35 ± 8 (25, 50) mm
- Outcomes consistent across gap range
- Versus historical controls in the literature
 - Exceeds hollow tube conduit
 - Comparable to autograft

TABLE 3. Distribution of MRCC Scores for Return of

 Sensory Function

Sensory MRCC Score	Gaps Gaps 26–39 mm 40–50 mm		Cumulativ Group	
S0	2	2	4	
S1	1	0	1	
S2	1	0	1	
S3	11	1	12	
S3+	18	10	28	
S4	3	1	4	
MRCC \geq S3	89%	86%	86%	

Do Allografts Work for Mixed and Motor Nerve Injuries?

Setting Expectations vs. Autograft, The Gold Standard

Comparison to Historical Reference Literature					
Study	Nerve Injury Types	Test Article	Level of Recovery	Positive Outcomes*	
Nerve Autograft Studies					
Weber, et al., 2000	Sensory Nerves	Direct Repair and Autograft	≥S3	86%	
Kim and Kline 2001- 2006	Sensory and Mixed Nerves	Direct Suture and Autograft	≥\$3/M3	67-%	
Frykman and Gramyk, 1991	Sensory Nerves	Autograft for Digital Nerve Injury under 5 cm	≥S3	70%	
Frykman and Gramyk, 1991	Mixed Nerves	Direct Suture and Autograft	≥S3/M3	70-75%	
Kallio, et al., 1993	Sensory Nerves	Autograft and Direct Repair	≥\$3/M3	67%	
Matejcik et al. 2003	Sensory and Mixed Nerves	Autograft	≥S3/M3	60-80%	
Donzelli et al. 1998	Sensory Nerves and Mixed Nervs	Autrograft	≥S3/M3	65%	
Rjuis et al. 2005	Mixed Nerves	Autograft	≥\$3+/M4	51%	
* As reported, based on indi	vidual study parameters for a	cceptable recovery: M3-M5, S3-S4 by MRCC			

RANGER Mixed & Motor Subgroup Analysis: Inclusion Criteria

- Upper extremity and head and neck mixed and motor nerve repairs
- Minimum of 6 months follow up
- Reported relevant assessments sufficient for outcome evaluation using the Medical Research Council (MRC) scale for motor function

Relevant Assessments for Specific Nerve Repairs

Nerve Repaired	Functional Assessment	
Median nerve, forearm	Flexion of the thumb, index and middle fingers as well as the ability to form a composite fist	
Median nerve, wrist	Palmar abduction of the thumb; flexion of the index and middle fingers at metacarpophalangeal joints	
Radial nerve, upper arm	Extension of the wrist; abduction of the wrist	
Radial nerve, forearm	Supination of the forearm	
Ulnar nerve, forearm	Flexion of the ring and small fingers at distal interphalangeal joints	
Ulnar nerve, wrist	Key pinch; abduction of small finger; flexion of ring and small fingers at metacarpophalangeal joints	
Musculocutaneous nerve, biceps branch	Elbow flexion	
Spinal accessory nerve	Shoulder elevation	
Facial nerve, buccal, mandibular and zygomatic branches	Lip movement (whistling, smiling, puckering and pouting the lip)	

Overall Summary of Outcomes

- No significant difference was found in subject age, preoperative interval or follow-up length among subgroups
- Meaningful recovery was reported in 75% of mixed and motor nerve repairs overall
- No related adverse events reported
- No significant difference in MR between:
 - Mechanism of injury
 - Gap length

A11	Gap Length (mm)				
All	10-25	26-49	≥50		
36	16	13	7		
39 ± 19	41 ± 20	44 ± 20	28 ± 9		
8.5 (0, 133)	7.5 (0, 96)	5 (0, 133)	45 (9, 125)		
594 ± 441	619 ± 347	506 ± 314	698 ± 719		
19	11	6	2		
13	3	5	5		
4	2	2	0		
27	11	10	6		
75%	69%	77%	86%		
	All 36 39 ± 19 8.5 (0, 133) 594 ± 441 19 13 4 27 27 75%	All IO-25 36 16 39±19 41±20 8.5 (0, 133) 7.5 (0, 96) 594±441 619±347 19 11 13 3 4 2 27 11 75% 69%	AllGout County Length (mm10-2526-4936161339 ± 1941 ± 2044 ± 208.5 (0, 133)7.5 (0, 96)5 (0, 133)594 ± 441619 ± 347506 ± 31419116133542227111075%69%77%		

Summary of Outcomes by Nerve

Nerve	No. of Repairs	Gap (mm)	MR	%MR	
Median	18	35 ± 21	15	83%	Signi
Ulnar	10	33 ± 21	4	40%	(p=0.
Radial	3	48 ± 14	3	100%	
Musculocutaneous	1	15 ± 0	1	100%	
Spinal Accessory	1	12 ± 0	1	100%	
Facial	3	27 ± 2	3	100%	
All	36	34 ± 20	27	75%	

Significant Difference (p=0.03)

Summary of RANGER Mixed and Motor Subgroup Analysis

- Processed nerve allografts provided functional motor recovery for mixed and motor nerve repairs in the upper extremity
- Subgroup analysis showed no differences between gap lengths or mechanism of injury
- Median nerve repairs showed a higher rate of meaningful recovery than ulnar nerve repairs and was comparable to historical controls for nerve autograft
- Outcomes compare favorably to historical controls from available literature for nerve autograft and exceed that of nerve conduit
- The overall success rate and safety supports the use of processed nerve allograft within the treatment algorithms for mixed and motor nerve injuries
- The RANGER[®] registry is currently ongoing and future reports from it will provide additional clinical evidence on the expanding role of PNA in mixed and motor nerve repairs

