TFCC Tears and Repair

Jeffrey Yao, M.D.
Associate Professor
Department of Orthopaedic Surgery
Stanford University Medical Center
Disclosures

- The following relationships exist:

1. Grants
 American Foundation for Surgery of the Hand

2. Royalties and stock options
 Arthrex

3. Consulting income
 Smith and Nephew Endoscopy, Arthrex, Axogen

4. Research and educational support
 Arthrex

5. Editorial Honoraria
 Elsevier, Lippincott

6. Speakers Bureaus
 Arthrex, Trimed
Introduction

• Tears of the TFCC are a common cause of ulnar-sided wrist pain
• Traumatic tears usually occur with an extension and pronation force to an axially loaded wrist
• Patients typically have pain with ulnar deviation and rotation of the wrist
Functions of DRUJ

- Distal link between radius and ulna
- Allows radius and attached carpus to pivot smoothly around ulna
- TFCC
 - major stabilizer of the DRUJ
 - provides suspensory mechanism for ulnar carpus
 - central articular disk is the load-bearing component of TFCC
 - allows transmission of axial load from carpus to forearm
Anatomy - The TFCC

Thanks to Rebecca Yu, MD
Anatomy - Soft Tissue

- TFCC (Triangular Fibrocartilage Complex)
 - Distal radioulnar ligaments
 - Palmar
 - Dorsal
 - Articular Disk
 - ECU Subsheath
 - Meniscal homologue
 - Ulnar collateral ligament
 - Ulnar extrinsic ligaments
Anatomy of the TFCC
Anatomy of the TFCC

- Dorsal and palmar radioulnar ligaments
 - Ulna fovea to palmar and dorsal margins of sigmoid notch
 - Ligamentum subcruentum: deep and strong vertical foveal insertion
Anatomy of the TFCC

- Fibrocartilaginous articular disk
 - Load transmission
 - Transitions to hyaline cartilage radially, does not insert into distal sigmoid notch
Anatomy of the TFCC

- **ECU sheath**
 - Arises from dorsal fovea
 - Distal radioulnar ligament splits to form the ECU tendon sheath
Anatomy of the TFCC

- Meniscal homologue
 - Ulnar leash of tissue sweeps distally from surface of articular disk to the triquetrum (90%) or triquetrum + lunate (10%)
Anatomy of the TFCC

• Ulnar Collateral Ligament
 – loose fibers passing from tip of ulnar styloid to triquetrum, pisiform, and articular disk
 – Resists radial deviation
Anatomy of the TFCC

- Ulnar extrinsic ligaments and LTIL
Anatomy - Blood Supply

Only peripheral 10-30% has a blood supply

Bednar, Arnoczky, Weiland, JHS 1991
Biomechanics

• **Force Transmission**
 – Typically 80% of compressive force from the wrist is borne through distal radius
 • 20% through ulna
Biomechanics

Force transmission changes with ulnar variance
+2 mm ulnar variance results in increase to
40% through ulna
Clinical Evaluation
Clinical Evaluation - History

• Fall on an axially loaded pronated wrist

• Pain with forced pronation or supination

• Pain with gripping in ulnar deviation
Clinical Evaluation- Physical Exam

• Fovea sign
 – Focal tenderness to palpation at ulnar styloid base

• TFCC stress test
 – Axial load, ulnar deviation, rotation

• Test for DRUJ stability (piano key & shuck test) in all positions - neutral, pronation & supination
Examination
Imaging

- Standard Radiographs
- “Zero Degree - PA”
 - Elbow flexed to 90°
 - Shoulder abducted to 90°
 - Hand flat on X-ray cassette
 - Standard for measuring ulnar variance
Imaging

- Ulnar Variance PA
Ulnar Variance

Ulnar Positive Variance Ulnar Negative Variance
Imaging - CT

- Visualizes:
 - Sigmoid notch depth
 - Congruency of ulnar head
 - Arthritic changes

- Both wrists should be scanned in:
 - Pronation
 - Neutral
 - Supination
Imaging - Arthrography

- Triple injection (DRUJ, radiocarpal and midcarpal)
- Useful for evaluating TFCC, SL and LT
 - Specific patterns of leakage observed with specific injuries
- Seldom performed
 - Many asymptomatic patients found to have degenerative tears
 - 42% sensitivity
 - 20% specificity

Chung KC, JHS 1996
Imaging - MRI

- Radial attachment of articular disk at sigmoid notch
- Articular disk
- Styloid insertion
- Foveal insertion
- Ligamentum subcruentum
Imaging - MRI

• ± MR Arthrography (Intra-articular injection)
• ± Indirect MR Arthrography (IV contrast)
• 1.5T: 85% sensitive
• 3.0T: 94% sensitive

Anderson et al JHS 2008, Faber et al JHS 2010
Imaging - Arthroscopy

- **Gold Standard**
- **Diagnostic as well as therapeutic**
- **Can detect TFCC tears as well as other pathology**
 - chondral lesions
 - other ligamentous injuries
- **TFCC Tears:**
 - Loss of resiliency to probing (Trampoline test)
 - Indirect visualization of a peripheral tear
 - Hyperemia along periphery
 - Tears of LT ligament
 - ECU sheath injury
Imaging - Arthroscopy
Imaging - Arthroscopy

- Trampoline Test
 - Ballottment of articular disk
TFCC Tears

- Classification of TFCC tears
 - Palmer, 1989
 - Traumatic
 - IA – central perforation - DEBRIDE
 - IB - ulnar/peripheral avulsion - REPAIR
 - IC – distal/volar avulsion - DEBRIDE
 - ID – radial avulsion - DEBRIDE
 - Degenerative
TFCC Tears

• Can result in isolated ulnar sided wrist pain as well as DRUJ instability

• Mechanism of injury:
 – Extension with pronation to axially loaded wrist
 – Can also occur with hypersupination

• More common in patients who are ulnar positive or neutral
 – Ulnar negative patients have thicker articular disks
TFCC Classification

Palmer’s Classification of TFCC Injuries

Class 1: Traumatic
Type A: Central perforation
Type B: Medial avulsion (ulnar attachment)
 With distal ulnar fracture
 Without distal ulnar fracture
Type C: Distal avulsion (carpal attachment)
Type D: Lateral avulsion (radial attachment)
 With sigmoid-notch fracture
 Without sigmoid-notch fracture

Class 2: Degenerative (ulnocarpal impaction syndrome)
Stage A: TFCC wear
Stage B: TFCC wear with lunate and/or ulnar chondromalacia
Stage C: TFCC perforation with lunate and/or ulnar chondromalacia
Stage D: TFCC perforation with lunate and/or ulnar chondromalacia and
 lunotriquetral-ligament perforation
Stage E: TFCC perforation with lunate and/or ulnar chondromalacia, lunotriquetral-ligament perforation, and ulnocarpal arthritis

TFCC Treatment

• History, clinical findings, and studies are all used to formulate a plan

• Non-operative management is the initial treatment
 – Unless there is gross instability
 – Immobilization in for 4-6 weeks may allow healing of a TFCC tear
 • 57% versus 43%
 • Acute peripheral tears would be expected to heal given their vascularity

• Otherwise, surgical intervention
 – Debridement vs repair
 – Based on location of tear
Palmer 1A Tear

- Central tear
- Unlikely to heal (avascular)
- May be debrided
 - up to 2/3 of disk without affecting load transfer
- Typically ulnar positive variance:
 - Consider ulnar recession (wafer) or shortening osteotomy
Palmer 1C Tear

• Usually treated non-operatively or with debridement
• If repair is necessary be mindful of ulnar artery and nerve in region whether repairing through scope or open
Palmer 1D Tear

- Controversial
- Little if any vascularity to area
- Open and arthroscopic (difficult) treatments report good outcomes
 - Scope:
 - Meniscal repair sutures used
 - Exit between 1st and 2nd wrist extensor compartments (radial sensory nerve)
 - Open:
 - Dorsal approach between 5th and 6th extensor compartments
- Simple debridement has satisfactory results
Palmer 1D Repair
Palmer 1B (Peripheral) Tear
Treatment Options for IB Tears

• Conservative
 – If DRUJ is stable
 – Long arm casting x 4-6 weeks

• Surgery
 – Open repair using bone tunnels
 – Mini-open repair using Mitek anchor
 • Chou & Sotereanos (2003)
 – Exogenous fibrin clot
 • Whatley & Arnoczky (2000)
Open vs Arthroscopic TFCC Repair: What’s the Evidence?

- Anderson and Berger, et al. (JHS 2008)
 - 75 patients over 10 years
 - 36 arthroscopic, 39 open
 - Mean f/u: 43 months
 - **NO** significant differences in objective and subjective outcomes
 - Non-significant trend toward increased ulnar nerve irritation with open repair
 - 17% total reoperation rate for DRUJ instability
 - 8 open, 5 arthroscopic
Comprehensive Classification of TFCC Peripheral Tears and associated Ulnar Styloid Fractures

<table>
<thead>
<tr>
<th>CLASS 0</th>
<th>CLASS 1</th>
<th>CLASS 2</th>
<th>CLASS 3</th>
<th>CLASS 4</th>
<th>CLASS 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated styloid fracture without TFCC Tear</td>
<td>Distal TFCC Tear</td>
<td>Complete TFCC Tear</td>
<td>Proximal TFCC Tear</td>
<td>NON-repairable TFCC Tear</td>
<td>DRUJ Arthritis</td>
</tr>
</tbody>
</table>

Clinical Findings

- **DRLJ Ballottement Test**
 - Negative
 - Slight Laxity (Hard end-point)
 - Mild to Severe Laxity (Soft end-point)

Radiographic Findings

- Intact Ulnar Styloid or Tip Fracture of the Ulnar Styloid
- Basilar Fracture of the Ulnar Styloid

Artthroscopic Findings

- Appearance of the Distal TFCC (during RC Arthroscopy)
 - Normal Appearance (NO tear)
 - Peripheral Tear
 - Normal Appearance (NO tear)
 - Massive Tear Degenerated Edges
 - Frayed Edges Failed Suture

- Tension of the proximal TFCC (Hook Test)
 - Taut TFCC (Negative Hook Test)
 - Loose TFCC (Positive Hook Test)

- Cartilage status of DRLJ
 - Well preserved Cartilage
 - Degenerative or Traumatic Cartilage Defect

Suggested treatment

- Splitting for pain relief (Fragment removal in chronic painful cases)
- TFCC Suture (Splitting of acute cases)
- TFCC Forveal Refixation
- Styloid fixation
- Tendon Graft Reconstruction
- Arthroplasty
Open Repair
Treatment Options for IB Tears

- Arthroscopic repair
 - Outside-inside using meniscal repair needles
 - Whipple & Geissler (1993)
 - Knot tied over a button
 - Knot tied under the dorsal/ulnar skin
Treatment Options for IB Tears

- Arthroscopic Repair, cont
 - Inside-outside using meniscal repair needles
 - Trumble (1996)
 - Inside-outside using a Tuohy needle
 - Araujo & Poehling (1996)
 - All-arthroscopic
Arthroscopic-Assisted Repair
Disadvantages of Current Techniques

• Extra/larger incision
• Prominent subcutaneous suture knots
• Patient intolerance of buttons
 – Painful, unsightly, malodorous, skin changes
 – Septic arthritis
• Possible nerve injury
Introduction

• All-Arthroscopic Method of Repair
 • Yao et al, Arthroscopy, 2007

A Novel Technique of All-Inside Arthroscopic Triangular Fibrocartilage Complex Repair
All-Arthroscopic TFC Repair

• Pretied suture device
• Designed for knee meniscal repair
• New technique for the use in TFC repairs
• Potential for Decreased:
 – Operative time
 – Incisions
 – Prominent suture knots
• Increased
 – Efficiency
 – Safety
 – Strength
Biomechanical Strength and Safety Study

- 10 matched fresh-frozen cadaveric wrist specimens
- Iatrogenically produced peripheral TFC tears
- Experimental group:
 - Two pretied suture devices in vertical configuration
- Control group:
 - two outside-in 2-0 PDS sutures in vertical configuration (ala Whipple/Geissler)
- Location of implants relative to the N/V structures
- Instron MTS
 - specimens loaded to failure
Ulnar Dissection

Whipple/Geissler (PDS)
Distance from UNB: 1.9 cm
Distance from DBUN: 4.6 mm

Suture Device
Distance from UNB: 1.8 cm
Distance from DBUN: 17.1 mm
Biomechanical Study
Biomechanical Strength of Repair

Figure 3: Load to failure of Suture Device versus 2-0 PDS (*p<0.05)

Yao, JHS, 2009
Arthroscopy Set-Up
Portals

ECU over ulnar head

Lister’s tubercle

6-R

3-4

EPL
Arthroscope in 3-4
Probe in 6R
Insertion of Suture Device
Arthroscope in 6R
Suture device in 3-4
Pre-Repair

Arthroscope in 3-4

Probe in 6R

Post-Repair
Clinical Experience

- Retrospective Review 2005-2009
 - One hand surgeon
 - Patients with persistent ulnar-sided wrist pain despite immobilization and injections
 - MRI consistent with TFC tear
 - No concomitant DRUJ instability
Methods

• **Objective data:**
 - range of motion
 - grip strength
 - return to activity
 - post operative complications

• **Subjective data:**
 - *quick*DASH
 - PRWE questionnaires
Results

- 14 patients
- Mean f/u: 16.1 months
- Supination: 81 (+/- 13.1)
- Grip strength: 66% (+/- 13.8)
- quickDASH: 10.2 (+/- 11.4)
- PRWE: 18.8 (+/- 13.5)
- Mean time to full activity: 5.2 months
- 0 surgical complications
Conclusion

• All-arthroscopic repair of peripheral TFC tears show excellent short term results
 – 1 year followup, 93% achieved excellent subjective outcomes based on quickDASH and PRWE

• Benefits of this technique are
 – ease of use
 – lack of prominent suture knots or button
 – no extra incisions
 – safety
 – strength of repair
 • reduced immobilization from long arm Munster cast (6 wks) to short arm cast (4 wks)
Thank You!