

TFCC Tears and Repair

Jeffrey Yao, M.D. Associate Professor Department of Orthopaedic Surgery Stanford University Medical Center

Disclosures

- The following relationships exist:
- 1. Grants

American Foundation for Surgery of the Hand

- 2. Royalties and stock options Arthrex
- 3. Consulting income

Smith and Nephew Endoscopy, Arthrex, Axogen

- 4. Research and educational support Arthrex
- 5. Editorial Honoraria Elsevier, Lippincott
- 6. Speakers Bureaus

Arthrex, Trimed

Introduction

- Tears of the TFCC are a common cause of ulnarsided wrist pain
- Traumatic tears usually occur with an extension and pronation force to an axially loaded wrist
- Patients typically have pain with ulnar deviation and rotation of the wrist

Functions of DRUJ

- Distal link between radius and ulna
- Allows radius and attached carpus to pivot smoothly around ulna
- TFCC
 - major stabilizer of the DRUJ
 - provides suspensory mechanism for ulnar carpus
 - central articular disk is the load-bearing component of TFCC
 - allows transmission of axial load from carpus to forearm

Anatomy - The TFCC

Thanks to Rebecca Yu, MD

Anatomy - Soft Tissue

- TFCC (Triangular Fibrocartilage Complex)
 - Distal radioulnar ligaments
 - Palmar
 - Dorsal
 - Articular Disk
 - ECU Subsheath
 - Meniscal homologue
 - Ulnar collateral ligament
 - Ulnar extrinsic ligaments

- Dorsal and palmar radioulnar ligaments

 Ulna fovea to palmar and dorsal margins of sigmoid notch
 - Ligamentum subcruentum: deep and strong vertical foveal insertion

- Fibrocartilaginous articular disk
 - Load transmission
 - Transitions to hyaline cartilage radially, does not insert into distal sigmoid notch

- ECU sheath
 - Arises from dorsal fovea
 - Distal radioulnar
 ligament splits to
 form the ECU
 tendon sheath

Meniscal homologue

 Ulnar leash of tissue sweeps distally from surface of articular disk to the triquetrum (90%) or triquetrum + lunate (10%)

- Ulnar Collateral Ligament
 - loose fibers passing from tip of ulnar styloid to triquetrum, pisiform, and articular disk
 - Resists radial deviation

Ulnar extrinsic ligaments and LTIL

Anatomy - Blood Supply

Only peripheral 10-30% has a blood supply

Bednar, Arnoczky, Weiland, JHS 1991

Biomechanics

- Force Transmission
 - Typically 80% of compressive force from the wrist is borne through distal radius
 - 20% through ulna

Biomechanics

Force transmission changes with ulnar variance +2 mm ulnar variance results in increase to 40% through ulna

Clinical Evaluation

Clinical Evaluation - History

•Fall on an axially loaded pronated wrist

•Pain with forced pronation or supination

•Pain with gripping in ulnar deviation

Clinical Evaluation- Physical Exam

- Fovea sign
 - Focal tenderness to palpation at ulnar styloid base
- TFCC stress test
 - Axial load, ulnar deviation, rotation

 Test for DRUJ stability (piano key & shuck test) in all positions - neutral, pronation & supination

Examination

Imaging

- Standard Radiographs
- "Zero Degree PA"
 - Elbow flexed to 90°
 - Shoulder abducted to 90°
 - Hand flat on X-ray cassette
 - Standard for measuring ulnar variance

Imaging

• Ulnar Variance

Ulnar Variance

Ulnar Positive Variance

Ulnar Negative Variance

Imaging - CT

• Visualizes:

- Sigmoid notch depth
- Congruency of ulnar head
- Arthritic changes

Both wrists should be scanned in

- Pronation
- Neutral
- Supination

Imaging - Arthrography

- Triple injection (DRUJ, radiocarpal and midcarpal)
- Useful for evaluating TFCC, SL and LT
 - Specific patterns of leakage observed with specific injuries
- Seldom performed
 - Many asymptomatic patients found to have degenerative tears
 - 42% sensitivity
 - 20% specificity

Chung KC, JHS 1996

Imaging - MRI

Imaging - MRI

- ± MR Arthrography (Intra-articular injection)
- ± Indirect MR Arthrography (IV contrast)

- 1.5T: 85% sensitive
- 3.0T: 94% sensitive

Anderson et al JHS 2008, Faber et al JHS 2010

Imaging - Arthroscopy

- Gold Standard
- Diagnostic as well as therapeutic
- Can detect TFCC tears as well as other pathology
 - chondral lesions
 - other ligamentous injuries
- TFCC Tears:
 - Loss of resiliency to probing (Trampoline test)
 - Indirect visualization of a peripheral tear
 - Hyperemia along periphery
 - Tears of LT ligament
 - ECU sheath injury

Imaging - Arthroscopy

Imaging - Arthroscopy

Trampoline Test

 Ballottment of articular disk

TFCC Tears

- Classification of TFCC tears
 - Palmer, 1989
 - Traumatic
 - IA central perforation -DEBRIDE
 - IB ulnar/peripheral avulsion -REPAIR
 - IC distal/volar avulsion -DEBRIDE
 - ID radial avulsion DEBRIDE
 - Degenerative

TFCC Tears

- Can result in isolated ulnar sided wrist pain as well as DRUJ instability
- Mechanism of injury:
 - Extension with pronation to axially loaded wrist
 - Can also occur with hypersupination
- More common in patients who are ulnar positive or neutral
 - Ulnar negative patients have thicker articular disks

TFCC Classification

Palmer's Classification of TFCC Injuries^{3*}

Class 1: Traumatic

Type A: Central perforation Type B: Medial avulsion (ulnar attachment) With distal ulnar fracture Without distal ulnar fracture Type C: Distal avulsion (carpal attachment) Type D: Lateral avulsion (radial attachment) With sigmoid-notch fracture Without sigmoid-notch fracture Class 2: Degenerative (ulnocarpal impaction syndrome) Stage A: TFCC wear Stage B: TFCC wear with lunate and/or ulnar chondromalacia Stage C: TFCC perforation with lunate and/or ulnar chondromalacia Stage D: TFCC perforation with lunate and/or ulnar chondromalacia and lunotriquetral-ligament perforation Stage E: TFCC perforation with lunate and/or ulnar chondromalacia, lunotriquetral-ligament perforation, and ulnocarpal arthritis

*Adapted with permission from Palmer AK: Triangular fibrocartilage complex lesions: A classification. J Hand Surg [Am] 1989;14:594-606.

TFCC Treatment

- History, clinical findings, and studies are all used to formulate a plan
- Non-operative management is the initial treatment
 - Unless there is gross instability
 - Immobilization in for 4-6 weeks may allow healing of a TFCC tear
 - 57% versus 43%
 - Acute peripheral tears would be expected to heal given their vascularity
- Otherwise, surgical intervention
 - Debridement vs repair
 - Based on location of tear

Palmer 1A Tear

- Central tear
- Unlikely to heal (avascular)
- May be debrided
 - up to 2/3 of disk without affecting load transfer
- Typically ulnar positive variance:
 - Consider ulnar recession (wafer) or shortening osteotomy

Palmer 1C Tear

- Usually treated non-operatively or with debridement
- If repair is necessary be mindful of ulnar artery and nerve in region whether repairing through scope or open

Palmer 1D Tear

- Controversial
- Little if any vascularity to area
- Open and arthroscopic(difficult) treatments report good outcomes
 - Scope:
 - Meniscal repair sutures used
 - Exit between 1st and 2nd wrist extensor compartments (radial sensory nerve)
 - Open :
 - Dorsal approach between 5th and 6th extensor compartments
- Simple debridement has satisfactory results

Palmer 1D Repair

Palmer 1B (Peripheral) Tear

Treatment Options for IB Tears

- Conservative
 - -If DRUJ is stable
 - -Long arm casting x 4-6 weeks
- Surgery
 - -Open repair using bone tunnels
 - -Mini-open repair using Mitek anchor
 - Chou & Sotereanos (2003)
 - -Exogenous fibrin clot
 - Whatley & Arnoczky (2000)

Open vs Arthroscopic TFCC Repair: What's the Evidence?

- Anderson and Berger, et al. (JHS 2008)
 - -75 patients over 10 years
 - 36 arthroscopic, 39 open
 - Mean f/u: 43 months
 - NO significant differences in objective and subjective outcomes
 - Non-significant trend toward increased ulnar nerve irritation with open repair
 - 17% total reoperation rate for DRUJ instability
 - 8 open, 5 arthroscopic

Atzei and Luchetti, Hand Clinics 2011

		Comprehensive Classification of TFCC Peripheral Tears and associated Ulnar Styloid Fractures							
		CLASS 0 Isolated styloid fracture	CLASS 1	CLASS 2	CLASS 3		CLASS 4		CLASS 5
Clinical Findings	DRUJ Ballottement Test	Negative	Slight Laxity (Hard end-point)	Mild to Severe Laxity (Soft end-point)				e ir co tea	Variable
Radiographic Findings	Intact Ulnar Styloid or Tip Fracture of the Ulnar Styloid						A	A	A
	Basilar Fracture of the Ulnar Styloid			(Floating styloid*)		CLASS 3-A Avvision Fracture of TFDC Insertion	CLASS 4-A	CLASS 4-B	
Arthroscopic Findings	Appearance of the Distal TFCC (during RC Arthroscopy)	Normal Appearance (NO tear)	Peripheral Tear	Normal Appearance (NO tear)			Massive Tear Degenerated Edges	Frayed Edges Failes Suture	Variable
	Tension of the proximal TFCC (Hook Test)	Taut 1 (Negative I	TFCC Hook Test)	Loose TFCC (Positive Hook Test)					
	Cartilage status of DRUJ			well preserved Cartilage					Degenerative or Traumatic Cartilage Defect
Suggested treatment		Splinting for pain relief (Fragment removal in chronic painful cases)	TFCC Suture (Splinting of acute cases)	TFCC Forveal Refixation		Styloid fixation	Tendon Graft Reconstruction		Arthroplasty

Open Repair

Treatment Options for IB Tears

- Arthroscopic repair
 - Outside-inside using meniscal repair needles
 - Whipple & Geissler (1993)
 - Knot tied over a button
 - Knot tied under the dorsal/ulnar skin

Treatment Options for IB Tears

- Arthroscopic Repair, cont
 - Inside-outside using meniscal repair needles
 - Trumble (1996)
 - Inside-outside using a Tuohy needle
 - Araujo & Poehling (1996)
 - All-arthroscopic
 - Bohringer et al, Arthroscopy (2002)
 - Conca & Dalla Pria (2004)

Arthroscopic -Assisted Repair

Disadvantages of Current Techniques

- Extra/larger incision
- Prominent subcutaneous suture knots
- Patient intolerance of buttons
 - Painful, unsightly, malodorous, skin changes
 - Septic arthritis
- Possible nerve injury

Introduction

- All-Arthroscopic Method of Repair
 - Yao et al, Arthroscopy, 2007

A Novel Technique of All-Inside Arthroscopic Triangular Fibrocartilage Complex Repair

All-Arthroscopic TFC Repair

- Pretied suture device
- Designed for knee meniscal repair
- New technique for the use in TFC repairs
- Potential for Decreased:
 - Operative time
 - Incisions
 - Prominent suture knots
- Increased
 - Efficiency
 - Safety
 - Strength

Biomechanical Strength and Safety Study

- 10 matched fresh-frozen cadaveric wrist specimens
- latrogenically produced peripheral TFC tears
- Experimental group:
 - Two pretied suture devices in vertical configuration
- Control group:
 - two outside-in 2-0 PDS sutures in vertical configuration (ala Whipple/Geissler)
- Location of implants relative to the N/V structures
- Instron MTS
 - specimens loaded to failure

Ulnar Dissection

Whipple/Geissler (PDS) Distance from UNB: 1.9 cm Distance from DBUN: 4.6 mm Suture Device Distance from UNB: 1.8 cm Distance from DBUN: 17.1 mm

Biomechanical Strength of Repair

Yao, JHS, 2009

Arthroscopy Set-Up

Portals

ulnar head

Arthroscope in 3-4

Probe in 6R

Insertion of Suture Device

Arthroscope in 6R

Suture device in 3-4

Arthroscope in 3-4

Probe in 6R

Clinical Experience

- Retrospective Review 2005-2009
 –One hand surgeon
 - Patients with persistent ulnar-sided wrist pain despite immobilization and injections
 - -MRI consistent with TFC tear
 - -No concomitant DRUJ instability

Methods

 Objective data: -range of motion -grip strength -return to activity -post operative complications Subjective data: -quickDASH -PRWE questionnaires

Results

- 14 patients
- Mean f/u: 16.1 months
- Supination: 81 (+/- 13.1)
- Grip strength: 66% (+/- 13.8)
- quickDASH: 10.2 (+/- 11.4)
- PRWE: 18.8 (+/- 13.5)
- Mean time to full activity: 5.2 months
- 0 surgical complications
Conclusion

- All-arthroscopic repair of peripheral TFC tears show excellent short term results
 - 1 year followup, 93% achieved excellent subjective outcomes based on quickDASH and PRWE
- Benefits of this technique are
 - ease of use
 - lack of prominent suture knots or button
 - no extra incisions
 - safety
 - strength of repair
 - reduced immobilization from long arm Munster cast (6 wks) to short arm cast (4 wks)

Thank You!

