Peripheral Nerve Injury and Repair Options

Eric Hentzen, MD, PhD
Associate Professor, Orthopedic Surgery

University of California, San Diego
VA Medical Center, San Diego

May 20, 2017
Disclosures

• Synthes, Arthrex
Introduction

• Wide Spectrum of Disability

• Types of Injuries
 • Stretch/Traction
 • Most common
 • Crush
 • Laceration
 • Ischemic
 • Blast
 • Iatrogenic

• 75% Upper Extremity

• Prognosis
 • <50% regain useful function

• Tremendous amount of ongoing research…….
Anatomy – Cellular Level

• Axons
 – Transmit signals

• Schwann Cells
 – Supporting Cell of PNS
 • Produces Myelin
 • Secrete Neurotrophic Factors
 – Guides regrowth of axons
 • Cylindrical Orientation (Endoneurial Tubes)
 • Myelination of regenerating axons
Anatomy

- **3 Layers of a Nerve**
 - Epineurium
 - External Supportive Barrier
 - Perineurium
 - Surrounds individual fascicles
 - High Tensile Strength
 - Endoneurium
 - Loose Collagenous Matrix
 - Surrounds individual nerve fibers

Pathophysiology of Injury and Regeneration

- **Axon transected with traumatic degeneration in zone of injury**

- **Wallerian Degeneration** of distal nerve
 - Breakdown of neural and glial elements
 - Moderated by Schwann cells and macrophages
 - Only occurs with axon disruption
 - Starts 24-96 hours post injury
 - Completes by 6-8 weeks
Pathophysiology of Injury and Regeneration

- Growth cone regenerates
 - 1 mm/day, 1 inch/month
 - Basal lamina guides

- Schwann cells align to form Büngner bands

Injury Classification

- Seddon (1942)
- Sunderland (1951)

Neurapraxia: injury without physical disruption of axon or supporting structures *** No Wallerian Degeneration ***

Axonotmesis: disruption of axon but nerve in continuity (further subdivided by Sunderland based on structures disrupted)

Neurotmesis: complete transection of nerve
Prognosis

- Classification important for prognosis
- Neuropraxia - Full Recovery
- Neurotmesis - No Recovery
- Axonotmesis - Variable Recovery
Other Prognostic Factors

• **Age**
 – Younger do better
 • 3rd Decade

• **Level of the Lesion**
 – Distal better than proximal

• **Nature of the Nerve Injured**
 – Sensory recovers better than motor

• **Cause of the Injury**

• **Zone of Injury (soft tissue)**

• **Delay From Injury to Repair**
 – Surgeon has some control

Clinical Exam

• Careful documentation of neuro deficits
 – Define level and degree of injury
 – Baseline to compare for recovery

• Open injuries
 – Wound Evaluation
 • Clean/dirty
 • Zone of injury
 – Associated Injuries
 • Musculoskeletal
 • Vascular
Imaging

• Ultrasound
 – Reliable, cheap, available
 – Assess for continuity, neuroma, scar

• MRI
 – Nerves not accessible to ultrasound
 – Assess surrounding structures
 • Muscle atrophy, other soft tissues

Nerve Conduction Studies
Electromyography (NCS/EMG)

• Determine the site of injury
• Estimate severity of injury
• Follow and predict recovery

• NCS can localize the injury acutely

• EMG not useful acutely
 – becomes abnormal 3-6 wks after injury
 – acutely distinguish neuropraxia from axonotmesis/neurotmesis

• Indications
 – Closed Injuries/Fractures with Nerve Injury
 • e.g. Humeral Shaft Fractures, Knee Dislocations
 – Elective Procedures with Neuropraxia
 • e.g. Sciatic N after THA
Nerve Repair

• Indications
 – Open injuries
 • Neurotmesis (complete transection)
 • Acute repair
 – Closed injuries
 • Neuropraxia or Axonotmesis
 • Observe 3-6 wks
 • EMG
 – Baseline reinnervation, repeat in ~ 6wks
 • Imaging
 – Assess for continuity of nerve
 – US or MRI

• Delayed repair if discontinuous or no recovery in 3-6 months
Primary Repair

• **Best results: Immediate Primary Repair**

• Intraneural scarring with delay
• Earlier exploration provides easier diagnosis
 – Less scar tissue
 – Increased chance of matching fascicular arrangement

• **Prerequisites:**
 – Clean wound
 – Good vascular supply
 – No crush component
 – Adequate soft-tissue coverage
 – Skeletal stability
Primary Repair

• Goal = Tension-free repair
 – Tension causes
 • Gapping
 • Scar formation
 • Ischemia of nerve

• Mobilization of nerve
 – decrease tension
 • Transposition of Ulnar/Radial ➔ 3 cm
Primary Repair

• Technical Considerations
 – Neurolysis
 • Decrease tension
 – Resect to “healthy” nerve
 • Common cause of failure
 – Secondary Repair
 • Resect proximal neuroma and distal glioma
 – Gentle tissue handling
 – Microscope very helpful
Epineurial vs Fascicular Repair

• Equivalent results in most studies
• Exception is ulnar nerve near wrist
 – Motor fascicles definable
 • Ulnar side of nerve
• Epineurial Repair
 – 7-0, 8-0, 9-0 Nylon Suture
• Intra-fascicular Repair
 – 8-0, 9-0, 10-0
Nerve gap

• Precludes tension-free repair

• Occur with
 – Wide zone of injury
 – Delay in repair
 • Retraction
 • Scarring
 – Excision of neuroma or tumor
Nerve Gap Repair Options

• Operative Treatment
 – Grafting
 • Autograft
 – Cable
 – Trunk
 • Allograft
 – Transplantation
 – Decellularized
 • Conduits
 – Biologic
 – Synthetic
Nerve Autografts

- Gold Standard
 - Nerve architecture
 - Growth factors
 - Nonimmunogenic

- Drawbacks
 - Donor site morbidity
 - Scar
 - Sensory deficit
 - Potential neuroma
 - Limited availability
Donor Autografts

- Requisites:
 - Tolerable donor site morbidity
 - Sufficient length
 - Appropriate caliber
 - Ease of harvest

- Cutaneous Sensory nerves

- Sural Nerve most common donor
 - 40 cm length

- Multiple Other Donors
 - Upper Extremity
 - MABC, LABC, SRN, PIN, AIN
 - Lower-Extremity
 - SPN, LFCN, Saphenous
Autograft

- Technical Considerations
 - Same principles as primary repair but 2 repair sites
 - Tension-free repair
 - Graft 10-20% longer than defect
- Cabled Grafts
 - Injured nerve often larger than donor nerve
 - Multiple lengths of donor placed in parallel
 - Match diameter of severed nerve
 - Fascicular repair
4 cm Gap w/ Sural Nerve Cabled Autograft

Prox Ulnar Nerve

Distal Ulnar Nerve

Cabled Sural Nerve
Nerve Allograft

• Advantages
 – No donor site morbidity
 – Unlimited Supply
 – Potential recovery near autograft

• Two Options
 – Tissue allograft
 – Decellularized allograft
Tissue Allograft Nerve

- **Allotransplantation**
 - Alberts 1885 -> 1st allograft transplant
 - Primary drawback – immunogenicity

- Graft processing can decrease MHC II
 - Chemical treatment
 - Cold Preservation
 - Irradiation
 - Repetitive Freeze-Thaw
 - Lyophilization
 - University of Wisconsin Storage Solution
 - Pen G + Dexamethasone + Insulin + 5 Celsius x 7 days

- Patients still require 24 months of immunosuppression
- Has place for patients with very large nerve deficits to crucial nerves
Decellularized Allografts

- Acellular - Non-immunogenic
- Highly processed
 - Detergent, Gamma Irradiation
 - Enzymatic Degradation
 - Modulate surface molecules that regulate axon ingrowth
- Structural architecture maintained
 - Microtubules, laminins
 - Support nerve regrowth

- Results equivalent to autograft for sensory nerve gaps up to 3 cm

- Larger gaps or Motor or Mixed nerve
 - Less data, more mixed results in humans
 - Poorer results in animals
Conduits

• Simple tubes to direct nerve regeneration
 – Direct axon regrowth
 – Provide barrier to fibrosis
 – Concentration of growth factors in gap
 – Lack Schwann cells, neurotrophic factors and architecture

• Biologic
 – Vein/Artery

• Synthetic
 – Collagen (NeuraGen, Integra)
 – Polyglycolic Acid (NeuroTube)
 – Caprolactone (Neurolac)
Conduits

• Uses
 – Small sensory nerves
 – Short gaps < 3 cm
 • Inferior for larger gaps and also head to head compared to allografts and autografts in animal studies
 – Augmentation of primary repair or grafting

• Advantages
 – Directs nerve regrowth
 – Prevents fibrosis
 – Ease of use
 – Structural support for repair

• Disadvantages
 – Cost
 – No Schwann cells or nerve architecture
 – Only for small gaps in sensory nerves
Summary

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Repair</td>
<td>• Best Outcomes</td>
<td>• Must be tension free</td>
</tr>
<tr>
<td>Autograft</td>
<td>• “Gold-Standard” for Gaps</td>
<td>• Donor Site Morbidity</td>
</tr>
<tr>
<td></td>
<td>• Non-Immunogenic</td>
<td>• Scarring</td>
</tr>
<tr>
<td></td>
<td>• Bridges Long Gaps</td>
<td>• Neuroma Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limited Supply</td>
</tr>
<tr>
<td>Allograft</td>
<td>• Abundant Supply</td>
<td>• Expensive $$$$ (Decellularized)</td>
</tr>
<tr>
<td></td>
<td>• No Donor Site Morbidity</td>
<td>• Immunosuppression (Allo)</td>
</tr>
<tr>
<td></td>
<td>• Non-Immunogenic</td>
<td>• Less experience</td>
</tr>
<tr>
<td></td>
<td>(Decellularized)</td>
<td></td>
</tr>
<tr>
<td>Conduits</td>
<td>• Abundant Supply</td>
<td>• Expensive $$$</td>
</tr>
<tr>
<td></td>
<td>• No Donor Site Morbidity</td>
<td>• No Architecture for Regrowth</td>
</tr>
<tr>
<td></td>
<td>• Less Scarring</td>
<td>• Only short gap, sensory</td>
</tr>
<tr>
<td></td>
<td>• Accumulate NGF’s</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Primary repair without tension always preferred

For Gaps
- Autograft → GOLD STANDARD
 - Nothing shown better than autograft in any clinical situation
- "Classic" Allograft with immunosuppression
 - Very large defects when autograft not available
- Decellularized Allograft
 - Gaps from 1 – 5 cm
 - Preference for sensory and < 3 cm
- Conduits
 - Sensory Nerves with gap < 1.5 cm
 - Adjunct to Direct Repair
Summary

Length of nerve gap (cm)

- Autograft
 - Decellularized Allograft
- Conduit
- Primary Repair
Thanks!