Effect of wrist and finger loading and thumb position on scaphoid fracture displacement: a biomechanical study

Tyler Moore
Charles Lin
Garwin Chin
Hansel Ihn
Dr. Martin Tynan
Dr. Gregory Rafijah
Dr. Thay Lee

Orthopaedic Biomechanics Laboratory

VA Long Beach Healthcare System
University of California, Irvine
Scaphoid

- Scaphoid is the most commonly fractured carpal bone and accounts for ~60-70% of all fractures in the carpus.

- No consensus on how to treat an acute non-displaced scaphoid waist fracture:
 - Cast / surgery
 - Flexion / extension of wrist
 - Above / below elbow
 - Include / exclude thumb
 - Position of the thumb
Specific Aims

- Determine if thumb position has an effect on scaphoid waist fracture displacement
- Determine if wrist and/or finger loading has an effect on scaphoid waist fracture displacement
Methods
Testing Conditions

- 6 cadaveric specimens
- Dissection proximal to the wrist
 - Finger/wrist tendons dissected and Krachow sutures placed into tendons
- Potted in PVC pipe with forearm in neutral rotation
- Placed tracking posts into:
 - Radius
 - Scaphoid proximal pole (dorsal)
 - Scaphoid distal pole (volar)
Carpal Kinematic System

- Attached tendons to load cell on custom carpal kinematic system
- Bars placed across MCPs and screwed into 3rd metacarpal head
- Conditions
 - Wrist tendons loaded + 5 positions
 - Wrist tendons and fingers loaded + 5 positions
 - Record position of posts in each condition
Thumb Positions
Specimen Preparation, Post Placement, Mounting into Jig

↓

Intact, Wrist Loaded, Position 1, 2, 3, 4, 5

↓

Intact, Wrist and Fingers Loaded, Position 1, 2, 3, 4, 5

Fracture

↓

Fractured, Wrist Loaded, Position 1, 2, 3, 4, 5

↓

Fractured, Wrist and Fingers Loaded, Position 1, 2, 3, 4, 5
Fracture

- Mid-waist fracture with oscillating saw
 - Approach through snuffbox with care not to disrupt volar and dorsal ligaments
- Repeated loading and positioning conditions
Analysis

- Distance between proximal scaphoid centroid and distal scaphoid centroid
- Angulation of the posts
 - Flexion / extension
 - Radial / ulnar deviation
 - Pronation / supination
Results
The Effect of Thumb Position on Centroid Distance

- No significant differences between the thumb positions in all loading conditions
- Generally caused extension of distal fragment.
- No significant differences between the thumb positions in all loading conditions.
No statistically significant difference in the degrees of deviation between the various thumb positions
Pronation / Supination

- Generally caused pronation of distal fragment.
- No statistically significant difference in the degrees of pronation among the thumb positions.
Tendon Loading Results
Centroid Distance

- Grouped all 5 thumb positions together to look only at load effect.
 - Wrist loading is not statistically significantly different from intact
 - Our fracture achieved the objective of being less than 1mm
 - Meets the requirement for non-displaced scaphoid fracture
 - Wrist/Finger loading is statistically different from having only the wrist loaded
 - Loading the fingers does cause increased displacement

![Graph](https://via.placeholder.com/150)

- **Effect of Loading on Centroid Distance**

<table>
<thead>
<tr>
<th></th>
<th>Change in centroid distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>-0.00</td>
</tr>
<tr>
<td>Wrist</td>
<td>-0.20</td>
</tr>
<tr>
<td>Wrist & Fingers</td>
<td>1.40</td>
</tr>
</tbody>
</table>

* p < 0.05 vs. intact, + p < 0.05 vs. wrist
Flexion / Extension

- Statistically significant extension after fracture
- No statistically significant difference between loading conditions
Radial / Ulnar Deviation

- No statistically significant difference from intact or between the two loading conditions.
Pronation / Supination

- Statistically significant pronation with wrist loaded vs. intact.
- However, once wrist/fingers loaded there was no significant difference.
Summary

- None of the five thumb positions showed statistical significance for displacement/rotation under any loading condition.
- Interfragmentary displacement significantly increased when combined wrist/finger tendons were loaded when compared to just the wrist being loaded.
Summary

- Wrist and combined wrist/finger loading resulted in extension of the distal fragment.
- Wrist loading caused pronation of the distal fragment.
- Our fracture achieved the objective of being less than 1mm (under wrist loaded condition)
Discussion

- The literature has no absolute consensus as to how to cast patients for non-operative management of non-displaced scaphoid waist fractures.
- Some studies show thumb spica cast might not be necessary.
However, by placing the thumb in a spica cast, this could minimize interaction of the thumb with the fingers in a grasping motion.

- Theoretically, large tendon loads on the fingers would be reduced because patients would not be able to have finger/thumb interaction
- Simple, low load, range of motion of the fingers would be maintained.
Questions / Comments